
GreedyBear

Matteo Lodi

Sep 06, 2023

CONTENTS

1 Introduction 1
1.1 Public feeds . 1

2 Installation 3
2.1 Environment configuration . 4
2.2 Update and Re-build . 4
2.3 Installer for TPot Instance . 5

3 Usage 7
3.1 User management . 7
3.2 Feeds . 8
3.3 Enrichment . 9

4 Contribute 11
4.1 General Guidance . 11
4.2 Rules . 11
4.3 Code Style . 12
4.4 How to start (Setup project and development instance) . 12
4.5 Create a pull request . 13

5 GreedyBear API docs 15

6 GreedyBear API Redoc 19

HTTP Routing Table 21

i

ii

CHAPTER

ONE

INTRODUCTION

The project goal is to extract data of the attacks detected by a TPOT or a cluster of them and to generate some feeds
that can be used to prevent and detect attacks.

Official announcement here.

1.1 Public feeds

There are public feeds provided by The Honeynet Project in this site: greedybear.honeynet.org. Example

To check all the available feeds, Please refer to our usage guide

Please do not perform too many requests to extract feeds or you will be banned.

If you want to be updated regularly, please download the feeds only once every 10 minutes (this is the time between
each internal update).

1

https://github.com/telekom-security/tpotce
https://www.honeynet.org/2021/12/27/new-project-available-greedybear/
https://greedybear.honeynet.org/api/feeds/log4j/all/recent.txt
https://greedybear.readthedocs.io/en/latest/Usage.html

GreedyBear

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

Start by cloning the project

clone the Greedybear project repository
git clone https://github.com/honeynet/GreedyBear
cd GreedyBear/

construct environment files from templates
cp .env_template .env
cd docker/
cp env_file_template env_file
cp env_file_postgres_template env_file_postgres
cd ..
cp frontend/public/env_template.js frontend/public/env.js

Now you can start by building the image using docker-compose and run the project.

build the image locally
docker-compose build

start the app
docker-compose up

now the app is running on http://localhost:80

shut down the application
docker-compose down

Note: To create a superuser run the following:

docker exec -ti greedybear_uwsgi python3 manage.py createsuperuser

The app administrator can enable/disable the extraction of source IPs for specific honeypots from the Django Admin.
This is used for honeypots that are not specifically implemented to extract additional information (so not Log4Pot and
Cowrie).

Note that GreedyBear needs a running instance of ElasticSearch of a TPoT to function. If you don’t have one, you can
make the following changes to make GreeyBear spin up it’s own ElasticSearch and Kibana instances. (. . .Care! This
option would require enough RAM to run the additional containers. Suggested is >=16GB):

1. In docker/env_file, set the variable ELASTIC_ENDPOINT to http://elasticsearch:9200.

2. Add :docker/elasticsearch.yml to the last defined COMPOSE_FILE variable or uncomment the # local
development with elasticsearch container block in .env file.

3

GreedyBear

2.1 Environment configuration

In the env_file, configure different variables as explained below.

Required variable to set:

• DEFAULT_FROM_EMAIL: email address used for automated correspondence from the site manager (example:
noreply@mydomain.com)

• DEFAULT_EMAIL: email address used for correspondence with users (example: info@mydomain.com)

• EMAIL_HOST: the host to use for sending email with SMTP

• EMAIL_HOST_USER: username to use for the SMTP server defined in EMAIL_HOST

• EMAIL_HOST_PASSWORD: password to use for the SMTP server defined in EMAIL_HOST. This setting is used
in conjunction with EMAIL_HOST_USER when authenticating to the SMTP server.

• EMAIL_PORT: port to use for the SMTP server defined in EMAIL_HOST.

• EMAIL_USE_TLS: whether to use an explicit TLS (secure) connection when talking to the SMTP server, generally
used on port 587.

• EMAIL_USE_SSL: whether to use an implicit TLS (secure) connection when talking to the SMTP server, generally
used on port 465.

Optional configuration:

• SLACK_TOKEN: Slack token of your Slack application that will be used to send/receive notifications

• DEFAULT_SLACK_CHANNEL: ID of the Slack channel you want to post the message to

2.1.1 Recaptcha configuration

The Registration Page and the Login Page contain a Recaptcha form from Google. By default, that Recaptcha is not
configured and is not shown. If your intention is to publish GreedyBear as a Service you should configure different
variables as explained below.

In the frontend/public/env.js set the variable:

• RECAPTCHA_SITEKEY: Recaptcha Key for your site

In the docker/env_file set the variables:

• RECAPTCHA_SECRET_KEY_GB_LOCAL: your recaptcha secret key internal deployment

• RECAPTCHA_SECRET_KEY_GB_PUBLIC: your recaptcha secret key for public deployment

In that case, you would need to re-build the application to have the changes properly reflected.

2.2 Update and Re-build

2.2.1 Rebuilding the project / Creating custom docker build

If you make some code changes and you like to rebuild the project, follow these steps:

1. Be sure that your .env file has a COMPOSE_FILE variable which mounts the docker/local.override.yml
compose file.

2. docker-compose build to build the new docker image.

4 Chapter 2. Installation

GreedyBear

3. Start the containers with docker-compose up.

2.2.2 Update to the most recent version

To update the project with the most recent available code you have to follow these steps:

$ cd <your_greedy_bear_directory> # go into the project directory
$ git pull # pull new repository changes
$ docker pull intelowlproject/greedybear:prod # pull new docker images
$ docker-compose down # stop and destroy the currently running GreedyBear containers
$ docker-compose up # restart the GreedyBear application

2.3 Installer for TPot Instance

The file ‘installer_on_tpot.sh’ allows the automatic installation of Greedybear on an existing TPot instance. You can
choose the type of Greedybear you want to install (http, https or local). The installer will either clone Greedybear to
‘/opt/GreedyBear’ or if Greedybear exists on your system you need to input the absolute path to the existing Greedybear
folder. It will prompt you for the necessary information/secrets needed.

Example: sudo ./installer.sh --type=http --folder=/opt/GreedyBear

2.3. Installer for TPot Instance 5

GreedyBear

6 Chapter 2. Installation

CHAPTER

THREE

USAGE

3.1 User management

3.1.1 Registration

Since Greedybear v1.1.0 we added a Registration Page that can be used to manage Registration requests when providing
GreedyBear as a Service.

After an user registration, an email is sent to the user to verify their email address. If necessary, there are buttons on
the login page to resend the verification email and to reset the password.

Once the user has verified their email, they would be manually vetted before being allowed to use the GreedyBear
platform. The registration requests would be handled in the Django Admin page by admins. If you have GreedyBear
deployed on an AWS instance you can use the SES service.

In a development environment the emails that would be sent are written to the standard output.

3.1.2 Recaptcha configuration

The Registration Page contains a Recaptcha form from Google. By default, that Recaptcha is not configured and is not
shown. If your intention is to publish GreedyBear as a Service you should configure the Recaptcha.

3.1.3 Amazon SES

If you like, you could use Amazon SES for sending automated emails.

First, you need to configure the environment variable AWS_SES to True to enable it. Then you have to add some
credentials for AWS: if you have GreedyBear deployed on the AWS infrastructure, you can use IAM credentials: to
allow that just set AWS_IAM_ACCESS to True. If that is not the case, you have to set both AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY.

Additionally, if you are not using the default AWS region of us-east-1, you need to specify your AWS_REGION. You can
customize the AWS Region location of you services by changing the environment variable AWS_REGION. Default is
eu-central-1.

7

GreedyBear

3.2 Feeds

GreedyBear is created with the aim to collect the information from the TPOTs and generate some actionable feeds, so
that they can be easily accessible and act as valuable information to prevent and detect attacks.

The feeds are reachable through the following URL:

https://<greedybear_site>/api/feeds/<feed_type>/<attack_type>/<age>.<format>

The available feed_type are:

• log4j: attacks detected from the Log4pot.

• cowrie: attacks detected from the Cowrie Honeypot.

• all: get all types at once

• The following honeypot feeds exist (for extraction of (only) the source IPs):

– heralding

– ciscoasa

– honeytrap

– dionaea

– conpot

– adbhoney

– tanner

– citrixhoneypot

– mailoney

– ipphoney

– ddospot

– elasticpot

– dicompot

– redishoneypot

– sentrypeer

– glutton

The available attack_type are:

• scanner: IP addresses captured by the honeypots while performing attacks

• payload_request: IP addresses and domains extracted from payloads that would have been executed after a
speficic attack would have been successful

• all: get all types at once

The available age are:

• recent: most recent IOCs seen in the last 3 days

• persistent: these IOCs are the ones that were seen regularly by the honeypots. This feeds will start empty
once no prior data was collected and will become bigger over time.

The available formats are:

8 Chapter 3. Usage

GreedyBear

• txt: plain text (just one line for each IOC)

• csv: CSV-like file (just one line for each IOC)

• json: JSON file with additional information regarding the IOCs

Check the Redoc specification or the to get all the details about how to use the available APIs.

3.3 Enrichment

GreedyBear provides an easy-to-query API to get the information available in GB regarding the queried observable
(domain or IP address).

https://<greedybear_site>/api/enrichment?query=<observable>

This “Enrichment” API is protected through authentication. Please reach out Matteo Lodi or another member of The
Honeynet Project if you are interested in gain access to this API.

If you would like to leverage this API without the need of writing even a line of code and together with a lot of other
awesome tools, consider using IntelOwl.

3.3. Enrichment 9

https://greedybear.readthedocs.io/en/latest/Redoc.html
https://twitter.com/matte_lodi
https://twitter.com/ProjectHoneynet
https://twitter.com/ProjectHoneynet
https://github.com/intelowlproject/IntelOwl

GreedyBear

10 Chapter 3. Usage

CHAPTER

FOUR

CONTRIBUTE

4.1 General Guidance

Please refer to IntelOwl Documentation for everything missing here.

4.2 Rules

GreedyBear welcomes contributors from anywhere and from any kind of education or skill level. We strive to create a
community of developers that is welcoming, friendly and right.

For this reason it is important to follow some easy rules based on a simple but important concept: Respect.

• Before starting to work on an issue, you need to get the approval of one of the maintainers. Therefore please ask
to be assigned to an issue. If you do not that but you still raise a PR for that issue, your PR can be rejected. This
is a form of respect for both the maintainers and the other contributors who could have already started to work
on the same problem.

• When you ask to be assigned to an issue, it means that you are ready to work on it. When you get assigned, take
the lock and then you disappear, you are not respecting the maintainers and the other contributors who could be
able to work on that. So, after having been assigned, you have a week of time to deliver your first draft PR. After
that time has passed without any notice, you will be unassigned.

• Before asking questions regarding how the project works, please read through all the documentation and install
the project on your own local machine to try it and understand how it basically works. This is a form of respect
to the maintainers.

• Once you started working on an issue and you have some work to share and discuss with us, please raise a draft PR
early with incomplete changes. This way you can continue working on the same and we can track your progress
and actively review and help. This is a form of respect to you and to the maintainers.

• When creating a PR, please read through the sections that you will find in the PR template and compile it appro-
priately. If you do not, your PR can be rejected. This is a form of respect to the maintainers.

11

https://intelowl.readthedocs.io/en/latest/
https://greedybear.readthedocs.io/en/latest/Installation.html

GreedyBear

4.3 Code Style

Keeping to a consistent code style throughout the project makes it easier to contribute and collaborate. We make use
of psf/black and isort for code formatting and flake8 for style guides.

4.4 How to start (Setup project and development instance)

To start with the development setup, make sure you go through all the steps in Installation Guide and properly installed
it.

Please create a new branch based on the develop branch that contains the most recent changes. This is mandatory.

git checkout -b myfeature develop

Then we strongly suggest to configure pre-commit to force linters on every commits you perform:

create virtualenv to host pre-commit installation
python3 -m venv venv
source venv/bin/activate
from the project base directory
pip install pre-commit
pre-commit install -c .github/.pre-commit-config.yaml

Remember that whenever you make changes, you need to rebuild the docker image to see the reflected changes.

4.4.1 NOTE about documentation:

If you made any changes to an existing model/serializer/view, please run the following command to generate a new
version of the API schema and docs:

docker exec -it greedybear_uwsgi python manage.py spectacular --file docs/source/schema.
→˓yml && make html

4.4.2 Frontend

To start the frontend in “develop” mode, you can execute the startup npm script within the folder frontend:

cd frontend/
Install
npm i
Start
DANGEROUSLY_DISABLE_HOST_CHECK=true npm start
See https://create-react-app.dev/docs/proxying-api-requests-in-development/#invalid-
→˓host-header-errors-after-configuring-proxy for why we use that flag in development mode

Most of the time you would need to test the changes you made together with the backend. In that case, you would need
to run the backend locally too:

docker-compose up

12 Chapter 4. Contribute

https://github.com/psf/black
https://pycqa.github.io/isort/
https://flake8.pycqa.org
https://greedybear.readthedocs.io/en/latest/Installation.html
https://github.com/pre-commit/pre-commit

GreedyBear

Certego-UI

The GreedyBear Frontend is tightly linked to the certego-ui library. Most of the React components are imported
from there. Because of this, it may happen that, during development, you would need to work on that library too. To
install the certego-ui library, please take a look to npm link and remember to start certego-ui without installing peer
dependencies (to avoid conflicts with GreedyBear dependencies):

git clone https://github.com/certego/certego-ui.git
change directory to the folder where you have the cloned the library
cd certego-ui/
install, without peer deps (to use packages of GreedyBear)
npm i --legacy-peer-deps
create link to the project (this will globally install this package)
sudo npm link
compile the library
npm start

Then, open another command line tab, create a link in the frontend to the certego-ui and re-install and re-start the
frontend application (see previous section):

cd frontend/
npm link @certego/certego-ui

This trick will allow you to see reflected every changes you make in the certego-ui directly in the running frontend
application.

Example application

The certego-ui application comes with an example project that showcases the components that you can re-use and
import to other projects, like GreedyBear:

To have the Example application working correctly, be sure to have installed `certego-
→˓ui` *without* the `--legacy-peer-deps` option and having it started in another command␣
→˓line
cd certego-ui/
npm i
npm start
go to another tab
cd certego-ui/example/
npm i
npm start

4.5 Create a pull request

4.5.1 Remember!!!

Please create pull requests only for the branch develop. That code will be pushed to master only on a new release.

Also remember to pull the most recent changes available in the develop branch before submitting your PR. If your PR
has merge conflicts caused by this behavior, it won’t be accepted.

4.5. Create a pull request 13

https://github.com/certego/certego-ui
https://docs.npmjs.com/cli/v8/commands/npm-link

GreedyBear

4.5.2 Tests

Backend

Install testing requirements

You have to install pre-commit to have your code adjusted and fixed with the available linters:

pip install pre-commit
pre-commit install -c .github/.pre-commit-config.yaml

Once done that, you won’t have to think about linters anymore.

Run all tests

docker exec greedybear_uwsgi python3 manage.py test

Frontend

All the frontend tests must be run from the folder frontend. The tests can contain log messages, you can suppress
then with the environment variable SUPPRESS_JEST_LOG=True.

Run all tests

npm test

Run a specific component tests

npm test -- -t <componentPath>
// example
npm test tests/components/auth/Login.test.jsx

Run a specific test

npm test -- -t '<describeString> <testString>'
// example
npm test -- -t "Login component User login"

if you get any errors, fix them. Once you make sure that everything is working fine, please squash all of our commits
into a single one and finally create a pull request.

14 Chapter 4. Contribute

CHAPTER

FIVE

GREEDYBEAR API DOCS

GET /api/apiaccess

Durin’s APIAccessTokenView.

• GET -> get token-client pair info

• POST -> create and get token-client pair info

• DELETE -> delete existing API access token

New in version 1.0.0.

Status Codes

• 200 OK –

POST /api/apiaccess

Durin’s APIAccessTokenView.

• GET -> get token-client pair info

• POST -> create and get token-client pair info

• DELETE -> delete existing API access token

New in version 1.0.0.

Status Codes

• 200 OK –

DELETE /api/apiaccess

Durin’s APIAccessTokenView.

• GET -> get token-client pair info

• POST -> create and get token-client pair info

• DELETE -> delete existing API access token

New in version 1.0.0.

Status Codes

• 204 No Content – No response body

POST /api/auth/login

Extends durin.views.LoginView.

Responds with Set-cookie header and empty response data.

Status Codes

15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5

GreedyBear

• 200 OK – No response body

POST /api/auth/logout

Extends durin.views.LogoutView.

Responds with Set-cookie header and empty response data.

Status Codes

• 200 OK – No response body

GET /api/authentication

Status Codes

• 200 OK – No response body

GET /api/enrichment

Request if a specific observable (domain or IP address) has been listed by GreedyBear

Status Codes

• 200 OK –

GET /api/feeds/{feed_type}/{attack_type}/{age}.{format_}

Extract Structured IOC Feeds from GreedyBear

Parameters

• age (string) –

• attack_type (string) –

• feed_type (string) –

• format (string) –

Status Codes

• 200 OK – No response body

GET /api/me/access

Returns user’s access information.

Status Codes

• 200 OK –

• 500 Internal Server Error –

GET /api/sessions

Durin’s TokenSessionsViewSet.

• Returns list of active sessions of authed user.

• Only list() and delete() operations.

New in version 1.0.0.

Status Codes

• 200 OK –

16 Chapter 5. GreedyBear API docs

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

GreedyBear

DELETE /api/sessions/{id}

Durin’s TokenSessionsViewSet.

• Returns list of active sessions of authed user.

• Only list() and delete() operations.

New in version 1.0.0.

Parameters

• id (integer) – A unique integer value identifying this auth token.

Status Codes

• 204 No Content – No response body

GET /api/statistics/{id}/enrichment

Parameters

• id (string) –

Status Codes

• 200 OK – No response body

GET /api/statistics/{id}/feeds

Parameters

• id (string) –

Status Codes

• 200 OK – No response body

GET /api/statistics/feeds_types

Status Codes

• 200 OK – No response body

17

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

GreedyBear

18 Chapter 5. GreedyBear API docs

CHAPTER

SIX

GREEDYBEAR API REDOC

19

GreedyBear

20 Chapter 6. GreedyBear API Redoc

HTTP ROUTING TABLE

/api
GET /api/apiaccess, 15
GET /api/authentication, 16
GET /api/enrichment, 16
GET /api/feeds/{feed_type}/{attack_type}/{age}.{format_},

16
GET /api/me/access, 16
GET /api/sessions, 16
GET /api/statistics/feeds_types, 17
GET /api/statistics/{id}/enrichment, 17
GET /api/statistics/{id}/feeds, 17
POST /api/apiaccess, 15
POST /api/auth/login, 15
POST /api/auth/logout, 16
DELETE /api/apiaccess, 15
DELETE /api/sessions/{id}, 16

21

	Introduction
	Public feeds

	Installation
	Environment configuration
	Recaptcha configuration

	Update and Re-build
	Rebuilding the project / Creating custom docker build
	Update to the most recent version

	Installer for TPot Instance

	Usage
	User management
	Registration
	Recaptcha configuration
	Amazon SES

	Feeds
	Enrichment

	Contribute
	General Guidance
	Rules
	Code Style
	How to start (Setup project and development instance)
	NOTE about documentation:
	Frontend
	Certego-UI
	Example application

	Create a pull request
	Remember!!!
	Tests
	Backend
	Install testing requirements
	Run all tests

	Frontend
	Run all tests
	Run a specific component tests
	Run a specific test

	GreedyBear API docs
	GreedyBear API Redoc
	HTTP Routing Table

